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Part I: Theory
p

1. lntro iootion

The method of least squares collocation was Introduced Into physical
geodesy In two principal presentations by T. Krarup (1969) and H. MorItz (1972).

• Meanwhile, the method -- In this context denoted as “Method ~~~ -- Is well es-
tablished for different types of approximation and adjustment problems. Three
features for application in physical geodesy are pointed out:

We assume a certain number of measurements of a function
related to the anomalous potential of the earth’s gravity field
is given, such as gravity anomalies, sur~ .ce densities, do-
flectiona of the vertical and so on. Then the use of a harmonic
and regular covarlance expression In collocation will lead to a
global approximation to this function with minimum norm. The
norm is defined by the covariance function.

The subsequent application of “the law of propagation of cover-
iances” provides a global approximation to any desired function
related to the earth’s anomalous potential. In addition, due to
the same feot , least squares collocation allows the combination
of all types of measurements related to the anomalous potential.

A basic quality of e~~ct collocation is the reproduction of ~he
given data by the approximating function. This property Is ful-
filled in least squares collocation too, where t1~ signal part of
the measurements is reproduced by the approximating function .

Unfortunately, there are some numerical problems in contrast to the theo-
retical elegance of this method. Especially the necessary solution of a large
linear system- with a dimension equal to the number of observations can cause
severe difficulties.

A similar least squares estimation method, In this context denoted as
“Method Two”, Is described In (P. Whittle, 1963). A treatment of the method in
geodesy, for e~~mple, Is given by S. I.auer (1971), and by B. D. Tapley and B.
E. SChLitz (1973). Also Method Two is called least squares collocation in the

—1-



geodetic literature , compare (H. Morit a, 1973, p. 84), (H. Mor ltz and K. P.
Sohwarz , 1973), and (K. P. Schwarz, 1974).

A genersilsatlon in combining both types of least squa res methods is
derived by H. Wolf (1974).

K. P. Schwarz (1974) proved 4t for Method Two the solution of a linear
system with a dimension equal to the number of observations can be replaced by
a solution of a system with a dimension equal to the number of unknown s. This
property is of great advantage for all overdetermined problems.

The purpose of the present pape r is a comparison of the models under-
lying these two least squa res estimation methods and an analysis of their m di-
vidua l features, since In the geodetic literature both methods are not clearly disc rim-
m ated. In addition, we expect from the comparison, an answer to the question;
If the solution of a large linear system In Method 01., with a dimension equal -

to the number of observatIons, can be avoided as In Method Two. The cons icera-
tions will be restricted to the application of these models to quantities related to
the anomalous potential of the earth.

in a recent paper B. D, Tapley (1975) analyzes the two methods In re-
lation to the minimum variance principle.

I
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2. Basic Equatio ns for the Two Models

A detailed exposition of the models and their least squares solut ion is
given In the above mentioned literature. We restric t ours e4ves on the presen ’a-
tion of the basic formulas; for Method 0n~ equatlons (1) to (6)1 the corresponding
equations for Method Two are equations (7) to (12).

• The model equation for Method One is

(1) L = A x + s ’ + n
iii ~...1 ~ ftl

L . ... .vector of observations , dkn (n x 1),

-

• 
• 

x . . . . .unknown parameters , dim (m * 1),

• A . . . .  . coefficient matrix , dim (U X m~, that rela tes the
observations £ ‘o the parameters x,

s’. . .. . r andom signal part of £, dim (U x l), with E( s’) = 0
and E (s ’s ti) = C,, .. , where E (.) means the statistical
expectation and is usually defined in physical geodesy to
be the Integ~al over the earth , C.,,, Is the covarlance
matr ix for the signal s’.

n .. .. .random signal, with E (n) = 0 and E (im’) = C,~, .We also assume that E(s ’n’) = 0.

The desired signal is a with dimension (k x 1). The signal s does not appear
explicitly in equation (1), it Is linked to the model by.a zero mat rix 0. We obtain

(2) 1 = A ~ + [?]T 

[W~n]
I’ 8+~~*4t I

or w ith

L 
-

~~~

- - - - - - - - -—~~~~~ — ---~~ - - -- - -— - - --- -



[ ? ] = Band [~~~~] = V ,

- 
where I . . . Identity matrix.

The minimum length of the vector v will be derived from the minimization of

v T Q~~v

where

I3~ IC.. C..’

~ LP.’. C..~~+ C

I
r

- and C.. .. .. , covariance vector of a
C,., . .. .oroescovarlanoe between a and a ’.

It Is assumed that E (an’) = 0. Prom the least squares solution we obtain

v = QB’(BQB ’) 1 (L -A x )

and for the parameters x,

(4) x = (AT (BQB T I t A)~ AT (BQ B’) 1 t ,

where with equatIon (3)

.4..

A 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

- ~~~~~~~~~~~~ 
-



QB’ = 

~~~ ~J and BQB’ = C~ , + C1,, .

Tims, we obtain for the components of v

(5) 5 = C.,, (C.,., + C, ,J ’~ (L — Ax)

and

(6) 5’ + ii = (C.’.’ + C ,,,,) (C.,., + C,,,,) 1 (L - Ax)
= £ - A x .

The corresponding d.rlvat Ion for Method Two star ts with the model

(7) £ = Ax + Ba + n
*1 mu ll *ki ~

Here the desired signal a appea rs explicity In the model and is related to the
observation vector £ by the coefficiet~t matrix R with dim (U x k).

It has to be emphasized that even thou gh we use In Model Two the same
notation for x, s, and n these quantities may be different from the corresponding
variables In Model Two. In fact , the purpose of the following conside rations is to
clarify under what circumstances the corresponding variables x, 5, and n are
identical.

A rearrangement of the random quantities s and n leads to

(8) = Ax +

and wit h B~ = [~] and v* = [~] we obtain a model of the same form as for
• ~ - Method One

£ = A x +  B*T v*.



We minimize v*T Q*.1 vt with 
-

(9) = 
~~~~ CIII ’

and obtain from the least squares solution

Q* B*T (B* Q* B*T )_l ( L _ A x )

(10) x = (AT (B*Q*B*’)~~ A)~~ AT (B*Q*B*’)~~ £

where with equation (9)

= [C~ R1 and B*Q*B*’ = RC ,. R’ + C,,,,.

Finally, the components of v~ are

(11) 8 = C.. R~ (RC ,. R’ + C,,I) ’ (t - Ax) 
-

and

(12) n = C (R C.. R’ + C,,,)~~~( L - A x )

With equatIons (1) to (6) we draw the foU~~lng conclusions for Model One:

• --The random sIgnal a ’ is of the same physical nature as the observations t .

—6—
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--The desired vector s can be of any dimension, k, and of cay kind as long as
it Is correlated with a’. If there exists no correlation between a and a ’,
which means that there exists no depende nce of a on the observations £,
the covariance C .  becomes zero and by this also the estimate of the slgr.
nal s.

-—Although solution equation (6) for a ’ + ii is trivial as it shows only the
basic model (1). It nevertheless reflects a basic characteristic of all
collocation methods, which is the reproduction of the measuremen t--in
our case of the trendfree measurement £ - Ax •-- at the sample points.

--If the elements of the covariance matrices are l~illt from global covariance
expressions futhlling Laplace’s equation and following the “law of propa-
gation ” such as the covarlance expressions derived by C. Tschernlng and
R. Rap p (1974) , the solution equatIon (5) will converge for limit n-~~
towards the linear operator equations in physical geodesy, as proved by
H. Morltz (1975) .

From equations (7) and (8) for Model Two we see that the coeffic ient matrix
R has to be given explicitly.

;
••

—7—
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3. Comparison

A formal Investigation of the equations for the two models, (1) to (6),
respectively (7) to (12), shows the following dIfferences:

1. The least squares norm for VT V and V*TV * is obtained with respect
to different variance covarlance matrices Q, respectively Q~.

2. The difference In Q and Q* causes the different solution equations
for the trendfree observatIon s’ + n, equation (6), and for the
observation noise, n, equation (12) . An equivalent equation for
n can be deduced In Model One by splitting equation (6) into an
estimation equation for a ’ and one for n.

3. Thie to the same reaso n, I.e the difference In Q, also the solutions
for the parameter s x, equatIons (4) and (10), and for the random
signal s, equatIons (5) and (11), are different although the formulas
show formally a similar structure.

The purpose of both models Is the optimal estimation of the paramete rs x and
of the random signal a. Thus, the analys is will be concentrated on the solution
equations for x and a. We see that for,

(13) C . ’ = CUR T

and for

(14) C,’.’ = RC .. R’

the solution equations- (4) and (10) and also (5) and (11) become identical . These
two expressions can be derIved from one single equatIon,

(15) 5’ = Ra

—8—
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The same rela tion is immedia tely obtained comparing model equations (2) and (8).
The deriva tion of equatIons (13) and (14) from equation (15) is obvious:

Equation (15) Is multiplied on both aides with a and the statistical expectation
is taken. We obtain:

(17) E(a ’sT) = RE(Sa’)

This Is a discrete form of the well known WIENER-HOPF equation. In geodesy it
is the foundation of the “law of propaga tion of covarlancee . Again the integral over
the earth takes the place of the statistical expectation. The expectations E(s ’s’)
and E (as’) become the covarlances C ’. and C,. , and equation (17) becomes
equatIon (13).

In the same way, we take the expectation on the square of equation (15)
and Obtain,

(18) E(a’#) = RE (Bs’)R ’.

We replace the expectations by the corresponding covariance expressions and deduce
equation (14). The comparison shows that the estimates for the parameters x and
the random signal a become identical for both models , If only equation (15) is
valid. Therefore our fur ther considerations will be concentrated on this equation.
We analyze if there exists a relatIon (15) with dimension k between two quantities
related to the anomalous potential of the earth. In order to provide an easy Ins ight
Into possible agreements and disagreements the discussion is split Into filtering,

• prediction and collocation.

3.1 FIltering

The purpose of least squares filtering is the separation of the noise n from
the signal S In the least squares sense. Thereby we assume that the covarlance

-9—
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function of the signal and the covariance function of algnal plus noise are given.
Since filterIng is usually carried out In all observation points , we have k = n.
Because every signal a correeposide to a certain observation t the coefficient
matrix will be the unit matrix, R =1. Thus, expression (15) becomes

or

(19) a’ = a

and Identic al estimati on equations (4) and (10), and also (5) and (11) are ef-
i~ctlve. For least squares filtering both models lead to Identical results..

3.2 Prediction

Least squares prediction means the optimal linear estimation of the ran-
corn signal a from the observations t at k points which are not IdentIcal with
the n observation points. In physical geodesy this definitIon has to be refined .
We assume that the observation and prediction points are on the same sphere, a-,
or In spherical approximation on the earth’s surface or on the geoid.

Following Krarup (1969, p. 16), we denote the last two terms in equation
(5) with ~~ ,

(20) = (C.., + C~ )~~~( t -  AX), I = 1 ,...n.

t The variable ~~ , Is only dependent on the n observation points P~ but not on t~~~
predic tion points . The decision at what and at how many point s predi&ion is oar
ned out depends on C. .. The oovanlance C,,. is a fUnction of the observation
points P~ and of the finite or Infinite isamber k of prediction points Q. The

—10—
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most general form for the covar lance vector Ciii is derived when each vector
element is an analytical function of the prediction point Q, Qf a,

• C.ii C,~(Q) .

Then formula (5) becomes with (20)

(21) a (Q) = Cp1 (Q)~ p~

where s(Q) is a continuous func tion of the predicted s1gT~ l, defined on a. This
case expresses the limit k-~~ where a forms a complete set.

Quite different is the sItuatIo n for Model Two: The corres ponding expres-
sion for ~~ becomes for Method Two, (from (11) )

(22) (RC 11 RT + Ciruj) 1 (L — A x), j 1, ... k,
1 = 1 , ... U.

In contras t to equation (20), the expression ~P~QJ Is dependent on the observa-
tion and prediction points since it contains R and R relates by definition, see e-
quation (7) ,the observations- to the signal . Therefore every choice of k makes
necessary a new computation of ~PIQ~.

But even If we accept this restriction for ~, the prediction canuot be
solved wIth Model Two. For, there does not exist a matrix R transforming a
finite set of random signals a Into a set of signals a ’, both quantities related
to the anomalous potential of the earth. Only for the limit k -.~~ a solution is
theoretically m.aningSil. For this limit the coefficient matrIX, R, degeneretes
towards DIrSc’s functions,

&
(23) R -.

-11—
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where 
~~ 

is the spherical distance between the observation point P1 and a~~prediction point Q. The basic relation (15) becomes for this limit

(24) llm ~~ = —i—— f 8(~.~q) I (Q)do.
4i~~~

We drsw the oonohzaio~s:

The least squares prediction problem can be efficiently treated by Model
One for a finite as well as for an Infinite number of random signals. With Model
Two the prediction problem cannot be treated. The limit relatIon for k -.~~ be-
tween s’ and s is given In formula (24). Considering this expression, Model
One can be Interpreted to be the limit of Model Two for k ~~~~~.

3.3 Collocation

We distinguish between filtering, prediction, and collocation to provide
an easy Insight into the special feature, of both models, although In the geodetic
literatur, the term least squares collocation usually Includes filtering and pre-
diction. In least squares collocation gravity quantities at a or In t -- E
denotes the spene outside a — are estimated fro m given observations which
may be at a or in E. Thereby, the collocation quantities a and the observa-
tions L may be gravity quantities of a differ,nt nature such as the disturbing po-
tential, gravity anomalies, and thei r first or second derivative.. FOr an expo-
sItion see H. Mor ltz (1973), T. Krarup (1969), and C. Tscherning (1975).

As in leas t aqua res predic tion,- for the more general collocation method
no finite relation (16) can be derived, now considering, as mentioned above, s’
and s to be gr vlty quantitie, of a different nature. Only for the extreme case

• where a becomes a continuous function ad a, the relation (15) between a ’ and s
is satisfied by one of the well known operator .quatiOne In ph ysical -geodesy.

E’ample: The derivation of gravity anomalies from altimeter data, as described
by R. Rapp (1974),

Assuming that the altimeter data are synonymous with g.otd Un-

—1$..
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dulatlona , the observation vector L and the random signal
vector 5’ will consist of undulatlons. The random atgi~ 1 a
will be a continuous function s(Q) of th. desired gravity ano-
malies. Then equatIon (15), i.e. the relation between the Un-

• 
dulations s’ and the gravity anomalies a is Stokes ’ formula,

• (25) = 4-ri G ~ St(*PI Q) 8 (Q) do

with :

R, . ...... mean radius of the earth
G ........ mean gravity over the earth
St (a)..... Stokes’ func tion for the spherical distance 4~

.

This means, in order to fulfill the r,latlcn between 5~ sad a
the finite k-dimensional vector a becomes a continuous func-
tion defined on a. Also In the spectral domain, in terms of a
spherical harmonic expansion, only the limit k-.~ Is valid.
The random signal a becomes the vector of the spherical har-
monic coefficients of the gravity anomaly expans ion. We ob-
tam for equation (15),

(26) s’~ = P’~ (coa~~) (s~~co8mAq + s3
~ sln mAq)

with:

P1,,(ooS~ q) ... . associated Legeudre polynomial of degree n and order m.

The equivalence of both models can only be achieved for the limit k-~~ , where
the finite dimension al matrix , H, becomes one of the well known operator .xpreasioas.

—13—
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For any finite k the two models will give dlffer,nt estimates for the random
sIgnal a and also for the parameters x.

Collocation based on Model One is carried out by Inserting the continuous
function obtained from equation (21) by least squares prediction Into an operator
equation that provIdes the deaired random signal. Thereby, the continuous signal
obtained from equatIon (21) which is of the same physical nature as the obeerva-
tiona Is transformed into a finite or infinite number k of signals a.

Examplet Let us again return to the problem of gravity anomaly recovery from
geoid undulations.

From equation (21k an intermediate aIgn%l W, i.e. a continuous
undulation ~~ctIon defined on a is obtained. The covarlafloe
function C,1(Q) is in thin case the aut000varlance function

~~‘(Q) of the geoid undulations. bi order to deduce gravity ano-
malies the signal ~ Is Inserted Into the boundary condition of
physical geodesy,

(27) s~• = —G I 
- _ _ _

where 8q~ ls the vector of the gratity anomalj ee, J~~ 1, ... k.
With equation (21) we find

(28) aq3 = -G ~~~~~~bi) 
- 

20

or

= (_ ~~( c ( )~~~ — —
~~~~ C~ (Q) )G~~~.

—14—
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We see that In equatIon (28) the operator equation (27) is
only applied on the covar iance C~~(Q) leaving ~~~ untouched.
In other words , the ‘law of propagation of covariancea” is
applied on C~ (Q). The expression in paren thesis becomes
We croascovariance between the gsoid undulations and
gravity anomalies, C~~’(Q) . We derive from equation (28) ,

(29) Bq~ = C~t1~3 G~~t .

In Model One the only approximation Is performed in the prediction step,
equation (21) , where from n observations a function covering the entire spisre
a Is estimated. The second step, where thin functIon is Insert ed into an operator
equation, is carried out without any approximation.

In Model Two a coefficient matrix R has to be established. In all practical situations
the dimension kwlU be chosen to be finite as shown for example In (Schwarz , 1974). In or-
der $0 solve a particular problem, an integra l operator or its development Into
an infinite Legendre polynomial connecting the signal with the observations has
to be approximated by a (U x k)-dimensional finite matrix B.

Example: For the application of Model Two to our problem , the recovery
of gravi ty anomalie s from altimete r data , a finite approximation
to equations (25) and (26) has to be formed . In one case the
signal vector a wifi consist of grav ity anomalies and the coeffi-
cIent matrix H of n x k values of Stokes ’ function. In the other
case, the coeffic ients of a spheric al harmon ic expansion of the
gravity anoma ly field are the elements of the vector s and H
consists of n x k spherical harmonica.

In contrast to Model One, for Model Two the operator equations have to be approxi-
mated by a finite system.

Summarizing the situation in least square8 collocation, we see: The
equivalence between Model One and Model Two can only be achieved for the global
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I

limit k-.~ . Then the baaic expression (15) becomes one of the operator equations
- of physical geodesy. For any finite k collocation by Model One and by Model Two

will result In different estimates for a and for x. In Model One, the only approx-
- imation is Introduced for the derivation of a function of the type of the observed

- - quantities covering the entire sphere a, whereas in Model Two, one of the inte-
gral or spectral operators is approximated by a finite system.

t
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Part II: Numerical Example

Tn this second part a numerical example is presented that allows us
to discuss some details In the comparison of the two least squares estimation
methods . The example treats the determination of spherical harmonic coeffi-
cients from geoid heights. The solution equations of the two methods are un-
fortunately very similar for this example because of the orthogona lity prop er-
ties of the spherical harmonics, as will be explained later In the paper. But
on the other hand this example has the advantage that it can be judged Indepe n-
dently of the chosen data . In addition, it is to a certain extent complementa ry
to (Schwa rz , 1975) where for a similar problem regular least squares adjust-
ment using no apriorl covarlance Information Is compared with method (2) .

We assume to have given 60 geoid heights free of erro rs in a glo-
bal spherical grid from latitude ~ = 60° to 0 - ~~)

° and fro m longitude A = 00

to A = 330° in 30° intervals. The grid allons the resolution of spheri cal har-
monic coefficients up to about degree L = 6 and order ~m~= 5 . Although it
would theoretically be possible to determine from both methods, method (1)
as well as method (2), an infinite number of coefficients -- where the coef-
ficients with t >  6 would not have any meaning beside s that they would con-
tribute to reproduce the original geoid heights -- we solve only for the coef-
ficients up to t~ = 4 (1g . . .  maximum degree) and ImI= 4 • That means
that we try to determine k = 21 coeffIc ients (neglecting degree zero and one)
given n 60 observations .

The spherical harmon ic expansion of the vecto r , ~ , of 60 geoid
heights is,

(30) ii = ~~ Y~. (P0 r a , j 1 , •.., 60;
~~~~ ?aO 1=—I

with ii...... fully normalized spherical harmonic coefficients
of degree £ and orde r m of the geoid height

a .. ..,.  vector of these coefficients (dim. •. 1)
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• fully normalized spherical harmonics
of degree £ and orde r m

F ...... matrIx to the harmonics (dim. n.e)

and with

i~. (P1) - (-1)’ [ (2-6~ ~(2L+ i)(L - mM ]* Pj~ (ath~~ e’~~

where ~~~~~~~ Kronecker symbol

P~1,(sii~~~). assoc iated Legend re functions.

For later needs the spherical harmonic development is splitted Into a k-dlmen-
tional part one and a (

~ 
- k +1) - dimensional part two,

(31) u = r a - R ~~~ + s
~ i ~~~~~~ * k k I * (.—~~+I) (~~—k I-I ) ~

Method (1):

Based on the given 60 geoid heights an approximation to the “true ”
global geold height function u(Q) is derived from

(32) G(Q) Q~ (Q, P 3) £~~
(
~~i’ 

P1) ’~~(Pj)

where ~~ is the autocovar iance mat rix of the geoid heights . The estimates
for the geold height spherical harmonic coeffic ients are obtained by Inserting
expression (32) into an integral formu la,

—18—
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A

= -L S d (Q) YL.(Q) dT

= 
~~~~~(Q. P1) V~~~(Q) da] C~(P3, I~~~u(l~)

By using for the covariance func tion the expression

C~ (Q, P) = d~ 5L+a Pt (C08 4~
p)

L o

R2 ~where dL = 
~~~~~~

- 

(L-1~ 
. e geoid height degree variance

s = (_&_) ....... square ratio of the mean earth
radius R. to a Bjerhammar
sphere w1t h I~.< R.

we obtain for as,,

(33) te.=(2~~1 8L+i .
~~~~ (Pa) C~~(P~,l~)~ u (P1)

and denoting

(34) = ~~~~

we find the estimation formul a for the geoid height coefficients

I
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(35) IL. =

1*  * *  * 1

Because of the global character of the approximation ~(Q) any geold height
coefficient may be estimated by equation (35) independently from one another.
Since we solve only for the lowest k = 21 coefficients (zero and first degree
excluded) we use the notation of equation (31) and rewrite equatIon (35) to

(36) =

k i  k *

and

(37) = C~ C~~ It ~~ + ~~~~
k i  k~~ it It k i  I t .  * *

Denoting

:~~~

and

= 
~~~~~

we obtain

(38) = +

Matrix relates the unknown low frequency spherical harmonic coefficients of
the given geoid heights to the unknown spherical harmonic coeffic ients to be esti-
mated. In an ideal situation Is expected to be the Identity matrix Matr ix
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relates the coefficients with £ >  L~ to the coefficients to be estimated.
laeally ~~ should be the zero matrix 0. In a practical situat ion like ours
where (Tinite but regular grid w ith observations defines a smallest resolv-
able wavelength (or Nyquist frequency) the matrix fr 0 generates the
alaising effect from the coefficients with L > l ~.

Method (21

Since we solve in our case only for k = 21 spherIcal harmonic geold
height coefficients , method (2) is based on a finite approximation to the in-
finite series expansion of equatIon (30). We express the geoid heights by a
finite series of spherical harmonics accepting a certain model error, ,

(39) U = R~~~~~+ E
=.1 lIt  I t I  . 1

The solution equation for the unknown parameter vector ~ is, us ing equation
(11)

(40) C.~ RT (R ~~~1 ~~~ + C ,$~ u
I t t  I t I t  I t s  l I t  k I t  I t .  i i  *1

Here Is the autocovarlance matrix of the spherical harmonic coeffic ients.
Because of the orthogonality of the spherical harmonics it becomes a diagonal

matrix with elements ~~~~ 
d1 , and It holds the relationship

2L + 1

(41) =

I t s  k I t  I t s



r - _____________________

Relation (41) based on the orthogonality properties of spherical harmonics and
corresponding to equation (13) of part bne’ie the reason that for this specific
e~~mp1e, I.e. the determinatIon of spherical harmonic coeffic ients from a gravi-
ty function, the estimation equations of method (1) and method (2) become vsiy
sim ilar.

In additIon , the matrix product R R’ is the autocovarlance matrix
for geold height Including wavelengths up to £~. We nay write

~0(42) Cs.~~ =

and

(43) C,~ = +

From equations (42) and (43) follows that relation (14) of par t~one’does not
hold for our example which means that the corresponding estimation equations
for both methods are not Identical.

We obtain for equation (40) using (41) and (42)

(44) = C~, ~~~~ +

and wIth (31)

(45) = + + +

Denoting

- ~~~ (
~~~~~+ C~~~~

1 R ,
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and

~~~~~~~~~~~~~~~~~~~~~ £ r n~~~
1
~~~

the corresponding equation to (38) becomes

(46) ~~~~~~ B t !~ +

where apin In an ideal situation B1 should be the identity matrix and the
zero matrix.

Althoug h the given geoid heights are assumed to be free of errors
the matrix C ,1, Is included in the estimation equation of method (2) . It may be
used (I) to ~iode1 partially the model err or , E , in equation (39) and ( ii) to sta-
bilize the numerical solution of equations (44) to (46) . In orde r to see the In-
fluence of the noise matrix Q~

,, on the estimates two diffe rent models were used :
model 2L (“V’ for low noise level) with C ,,, = 0.01 1 and model 2h (“h” for high
noise level) with C , = ? I with *

L_ 10+1

Model 2h is corresponding with C to be Interpreted as white noise with variance
equal to the variance of the short wavelen gth s(L > 1~) not contained in ~~~~~

Numerical Results and Their Interpretation

First, the matric es A1 for method (1) and B1 for method (2) have
been computed. They depend oE the spherical harmonic coefficients to be esti-
mated and on the location of the “observations ” but not on their magnitude. There-
fore they give an objective picture of the transformat ion from ~~ to 

~ For the
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described data grid the results for matrix A1 and for matrix B1 for version 2 t
(low noise) aixi 2h (high noise) are given Yn tables one to three.

The result for matrix ~~ of model 2L is withIn 1% a perfect identity
matrix as shown In Table 2. NegTectlng the Influence of the second right hand
term of equation (46) this means that method (2) would produce perfect coeffi-
cient estimate s using model 2t. Matrix B1 (table three) using model 2h shows
some small off-diagional terms and the di4onal terms slightly damped with
Inc reasing degree and orde r.

In orde r to understand the effect of A9 and B9 as well as of the not
ideal matrix A1 or B1 on the estimated coefficients we generated geold height
spherical harmonIc coeffic ients from the GEM 8 set of potential coefficients
(Wagne r et ala., 1976) which Is compl ete up to degree 25 with some additional
terms , and estimated the vector ~~ up to I~ = 4  andlml= 4 us ing equations
(38) and (46) . We split the estImat ed coefficients Into three parts :

(1) The part pro duced by the diagonal terms of and B1
(all of them shoul d be one in an ideal situation): The
results are listed for all three models in column 2 of
tables four to six.

Because of the perfect stnicture of B~ for model 2£
the estimates In column 2 are equalYo the input coef-
ficients. For method (1) and for model 2h the coef-
ficients are reproduced with small distortions because
of the damped terms on the diagonal of ~~ and B1
respectively. —

(2) The part produced by the off-d iagonal terms of A1 and
~~ (all of them should be zero): The results are given
in column 3 of tables fou r to six.

Also in column 3 there are only very small distortions
always less than 1/1000 of the corresponding coefficient
for model 2£. The distrubing contri bution caused by the
off-diagonal terms of A1 and B1 is however significant
for method (1) and for model Tb.
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(3) The part produced by the matr ices A, and B,
which Is q~e alalsing effect of the coefficien~ with
t>20 on~~ (all elements shouldbezeroln an ideal
situation). Tb. results are given In column 4 of
tables four to six.

The dimension of the matrices ~, and B, is only
n.(673 ...k+1) Instea d of n~ (~~-k+ 1). ‘&e number
673 is thereby the bill number of potential coeffi-
cients up to 2 =  25 and (ml= 25 excluding degree
zero and one.

We see In column 4 that the alalsing effect for me-
thod (2) model 22 Ia higher as compared to method
(1) and also to method (2) model 2h. But since the
magnitude of the Input coefficients decreases rapidly
with Increasing degree, e. g. e~q ressed by Kaula’s
rule of thumb, the disturb ing influence on the esti-
mated coefficients is comparably small.

Column 5 of the tables four to six contains the sum of all three parts which is the
vector of the estimated coefficients, ~ and in column 6 the vector , ~~, of the
Input coefficients is listed. The “beet” estimate s for the spherical harmonic
coefficients in the sense that the estimated coefficients are closest to the Input
coefficients is achieved by method (2) wIth the low noise model 22. The reasons
for this fact shall be more closely analyzed in the sequel.

For convenience we denote

and

=

I
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from from oft- from estlmaie
_____ 

diagonal of A~ diago~a1 of A~ B’, sum 2, 3.4  
__________

1 2 3 4 5 8
2 0 0.06517 0.16831 0.07428 0.30776 0.06713

2 1 —0.00041 -0.OfOIl -0.06661 -0.14714 —0.00042

2 1 0.00180 —0.07056 0.03897 —0.02979 0.00189

2 2 15.26656 0.04255 0.01277 15.32188 15.54655

2 2 $.75019 0.08158 -0.02123 -8.68984 $.91066

3 0 5.79696 0.00009 —0.01380 5.78325 6.11637

3 1 12.70010 —0.00003 0.09497 12.79904 12.~ ’39S

3 1 1.56016 0.00005 —0.05432 1.50589 1.59298

3 2 5.60725 —0.00007 —0.02939 5.57779 5.73012

3 2 —3.$~300 —0 .00003 0.05178 —3.34126 —3.97831

3 3 4.44619 0.00001 0.00032 4.44652 4.57315

3 3 8.79654 0.00001 —0.01617 8.7$038 9.04774

4 0 —1.10642 —0.00139 -0.00610 —1.11391 —1.59498

4 1 —3.10289 0.00004 —0.07775 —3.18060 —3.42616

• 4 1 —2 .73573 0.00003 0.04540 —2.69031 —3.02073

4 2 2.00418 0.05235 0.04531 2.10184 2.21423

4 2 3.84163 —0.02995 —‘0.07760 3.73408 4.2442*

4 3 5.69139 —0 .00004 0.00032 5.69168 6.28301

4 3 —1.13613 0.00004 0.04370 —1.09238 —1.25423

• 4 4 —1 .09034 —0.00004 -0 .00500 — 1.09539 —1.24623

4 4 1.70339 0.0 —0.00890 1.69448 1.94700

TabI. 4. Estimated Geold Height ~~herIca1 Har monic Coefficients
for Method (1).
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from from off- from estimate
_____  

diagoeal of~~, dlagona I of A ~~ um of 2,3,&4
I 2 3 4 5 6

k 2 0 0.06713 0.00062 0.13652 0.20427 0.06713

2 1 —0.00042 0.000 46 —0. 02631 —0.02627 —0.00042

2 1 0.00183 0.00048 0.07752 0.07982 0.00183

2 2 15.54655 —0.00037 0.05181 15.59799 15.54695

• 2 2 —8.91066 —0.00069 0.01823 —8 .89312 —8 .91066

3 0 6.11637 0.00007 -0.03422 6.0*221 6.11637

3 1 12.96393 —0.00003 0.14708 13.11100 12.96393

3 1 1.39258 0.00004 —0.02259 1.5700 3 1.59258

3 2 5.73012 —0.00007 —0.00068 5.72937 5.73012

3 2 —3.97831 —0.00004 0.10914 —3.86921 —9.97891

3 3 4.57315 0.00001 0.03952 4.61268 4.57319

3 3 9.04774 0.00001 0.01678 9.06433 9.04774

4 0 —1.59498 —0.00015 0.06859 —1.52654 —1.5~498

4 1 —3 .42616 0.00005 -0.04637 w3.47249 —3.42616

4 1 —3.02075 0.00002 0.08910 —2.93169 —3.02075

4 2 2.21423 —0 .00447 0.09618 2.3059 5 2.21423

4 2 4.24428 0.00262 -0.03863 4.18827 4.24428

4 3 6.2830 1 —0 .00005 0.03952 6.32248 6.28301

4 3 — 1 .25423 0.00005 0.09197 —1.16222 —1.23423

4 4 —1 .24628 —0.00005 0.033’.0 —1.21293 —1.24628

4 4 1.94700 0.0 0.02892 1.97 592 1.94700

I

Tabii 5. Estimated Geold Height ~~,tsr1CaI Harmonic Coefficients
for Mithod (2) Model 21
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from from off- from estimate
diagonal of A, dlagonalofA1 B, enm of 2,3,&4 -

1 2 3 4 5 6
2 0 0.06453 0.0491? 0.09261 0.20631 0.06713

2 1 —0.00040 —0.14880 .0.06678 —0.21599 -0.00042

2 1 0.00176 —0.13113 0.03895 —0.09042 0.00183

2 2 14.79840 0.05210 0.01329 14.86379 13.54655

2 2 —8.48185 0.09988 -0.02234 —8 .40431 —0.91066

3 0 5.72954 0.00006 -0.06883 5.66078 6.11637

3 1 12.41922 —0.00003 0.10329 12.52248 12.96393

3 1 1.52566 0.00004 —0.05925 1.4664 5 1.59258

3 2 5.42104 —0 .00007 —0.03778 3.38919 3.730)2

3 2 —3.76372 —0.00003 0.06411 —3.69764 —3.9789)

3 3 4.26032 0 .00001 0.00025 4.28038 4.~ ?315

3 3 8.46838 0.00001 —0.0210) 8.447)6 9 .04774

4 0 —1.12958 -0.00049 0.02020 —1.10979 —1.59498

4 1 —2.92038 0.00004 -0.07330 —2.9938 4 —3.42616

4 1 —2.57481 0.00003 0.04262 —2.53196 —3 .02075

4 2 1.83262 0.06530 0.04720 1.9452 2 2.21423

4 2 3.51279 -0.03738 -0.08108 3.39433 4.24428

4 3 5.05440 —0 .00004 0.00025 5.0546 1 6.28301

4 3 —1.00897 0.00006 0.04244 —0.96449 —1.25423

4 4 —0.97337 0.00004 -0.00434 —0.97995 —1.24628

4 4 1 .32370 0.0 -0.00804 1.51574 1.94700

Table 6. EstImated Geold Height Sphe rical Ha rmonic Co.fflcient.
for Method (2) Model 2h.
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where “i’ indicates that the elements of 
~~ 

are usually smaller than these of
~, especially when the maximum degree L~, is high. Under the usual conditions

convergency we expand C~~ = (C + Into a power series,

(47) C~~ = (C + ~~C )~~ = 
~~~~~~~~

- ~~~
1
~~C ~~~‘ + ~~~~AC ~~~‘~~C ~~~ -,— — = — — = = = — — —

Denoting the geoid height part generated by the spherical harmonic expansion
up to S~ with u1 and the residual geoid height with u , equation (31) becomes

(48)

EquatIon (37) becomes with (47) and (48)

(49) ~~~ = 
~~~~~ 

~~~~ + £ ‘~ 
~~~~~~~~~~~~ - 

~~ ~~-1 

~~~~ 
-

or

(50) ~~ = + - £.U
1
~~~~ ~~~~~~ 

~~ 
- +...

Multiplying equatIon (50) on both sides with R and using equations (41) and (42)
we obtain

(51) Ii = R ~ + Sa 0 - AC ~~~‘R ~~ - ~~C ~~~‘S~~~ + ....

With this series expansion It is possible to discuss equations (49) to (51)
term by term.

case 1: Tru~~atlon of series (49) afte r the first right band

T ~1II I~~TTT~ 

_ _ _



term : Then the equation represents an “exact” coUocation
solution in a k—dimensional space, i.e. in a situation where
the anomalc*is potential of the earth can be represented by
a series of spherical harmonics up to degree L~ with k
terms. Equation (51) shows that truncation afte r the first
right hand term results In perfect reproduction of ~~~~.

case 2: Truncation of series (49) to (51) after the first two
terms: The first two right hand terms of (50) are identical
to these of equation (46) for method (2) If C,,.., = 0 wh ich
I s approximately the case for model 2L .

That means that the estimation equation s for model 2L
with only the first right hand term reflect the situation des-
crthed in case 1, as shown in table 2 where

=

is a perfect identity matrix. The second term expresses
the alalsing effect. As is obvious from equations (50) and
(51) the magnit ude of the elements of ~ directly Influences
the distu rbing alais ing effect. Therefore since the magni-
tude of the coeffic ients of quantities related to the earth ’s
anomalous potential decreases in the mean with increasing
frequency, the alai~iug effect is comparably small as long
as low harmonic coefficients are estimated.

case 3: The complete formulas (49) to (51) represent the
collocation solution fo~ m~ethOd (1). The fi rst and higher
order terms in (49 ) containing ~ and in (50) containing

cause the damping of the diagonal terms and the app ear-
ance of off—d iagonal terms in matrix A1 (table 1). On the
other hand , the first and higher ordeiterms containing ~~
and a0 respectively reduce significantly the alaising effec t
as can be seen by comparing columns 4 of tables 4 and 5.

The matrix p roduct ~.C ~~~~
‘ whic h occurs in all first and
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higher orde r terms of equation (49 ) to (51) would become
zero if Instead of a finite point grid a global void height
function would be given , for then C and C~~ would be
orthogonal. For this case the solu one for method (1) and
method (2) would become Identical as already shown in
part one. For all finite point grids this orthogonality rela-
tionship is lost and causes the d1ffer ~x,~ in the solutions
for both methods.

Using method (1) the approximation to a gravity ft~nction is carried out In an
infinite dimensional HUbert space with kernel func Ion C represented by an
infinite dimensional Legendre series. Therefore It would be advisable to
solve for all coefficients up to Infinity. Only then a perfect reproduction of
the given geold height fro m the estimated coefficients Is ensured .

Finally, we see that method (2) usIng model 2h yields almost the
same results as method (1). Small dt~~rnx~es may be explained by the fact that
for method (1) C,a~ is used which containa all wavelength up to degree and or-
der infinity, whereas for method (2) mode l 2h In equation (43) the second
right had term 

~~~ 
,,~ is approximated by

AC ~~ C,,,, = o~I with ~? = ~~

‘ 

s~~
’ 
~

£ = L~’ ~

Because of the finite point grid the coefficients with ~ > L~, cannot
be resolved. That means that the low wavelength part of the geoid heights
basically behaves like white noise or in other words b.c becomes approxi-
mately C1,.

From coiu mn 5 of tables 4 to 5 we see that all three models pro-
duce a reasonable recovery of the in~*it geoid height spherical harmonic coef-
ficients. Although method (2) with model 21 produces the most satisfactory
results the underlying model can hardly be Justified since the low wavelengths
components of the given geoid heights are net properly modeled.
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I~’art III: Conclusions

The two least squares models, described by the equtions (1), (2) , (7) ,
and (8) can be distinguished by their different variance—covariance matrices
Q and Q*, compare equations (3) and (9). The differences In Q and Q*

lead to diffe rent fo rmulas for the estimation of the parameters x, equations
(4) and (10) , and for the random signal s, equations (5) and (11) . Only if
the relation

(15) s’ = Rs

between s and s’ is valid, the estimation equations for x and s become
identical. In physical geodesy where s’ and s are quantities related to the
earth anomalous potential, equation (15) is only fulfilled by one of the well
known operator equations, such as the Poisson, Stokes , or Vening-Meinesz
equations. In the frequency domain, where R expresses a spherical har-
monic development s becomes the infinite dimensional vector of spherical
harmonic coefficients of this development. In the parameter domain, equa-
tion (15) will be one of the Integral equations of physical geodesy and
we have to assume s to be given continuously at the entire sphere, a.

For any finite dimension of the random signal vector s we obtain dif-
ferent results for x and s from Model One as compared to Model Two. The
only approximation necessary to solve the finite problem is performed in Model
One for the derivation of a continuous function interpolated from the observa-
tions. After inserting this Interpolated function Into the operator equation
suited for the derivation of the desired gravity quantity, the operator equation
is solved without any approximation, whereas for Model Two the operator
equation itself Is approximated by a finite matrix system. Within this respect,
Model One is superior to Model Two. The advantage of Model Two lies in the
fact, that -- as already mentioned In the introduction -- the solution of a large
linear system with dimension equal to the number of observations can be re-
placed by the solution of a linear system with dimension equal to the number
of ui~ nowne, since R appears explicitly In the solution equations (10), (11)
and allows the application of certain matrix manipulations, compare for example
(U. Uotila, unpublished paper, (1973) or P. B. Liebelt (1967) pp.27).
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Finally, any problem which can be expressed by Model Two, I. e. for
which an explic it form of the coeffic ient matrix R can be established, can also
be solved by Model One. This Is obvious since with C,,. --assumed to be given
In both models--and R the covariances C. ’ and C.’,’ necessary in Model One
can be derived from equatIons (13) and (14) . The estimated parameter vector
x and random signal vector a will be identical.

The estimated value of a certain gravity parameter depends not only
on the special features of the two models bot to a high extent on the characteris-
tics of the gravity field as well. As an example low degree and order (1= Im I =
4) spherIcal harmonic coeffic ients of the geoid height have been estimated from
60 geoid heights which have been generated from the GEM-S set of potential
coeffic ients (1 — m f = 25) and were given in a global regular grid over the
sphere. For this problem the estimation equations become almost identical
for both methods with the only difference that for Method One the covarlances
between the observations contain all wavelengths inherent also In the spectnim
of the observatIons whereas these of Method Two contain only the wavelength
range of the coefficients to be estimated. Because of this a considerable a-
laising effec t would be expected for Method Two. But the results show that
because of the rapid decrease of the degree variances of geoid heights with In-
creasing degree the disturbing effec t of the shorter wavelengths (4 1’ 25) Is
almost negligible. The best recovery of the harmonic coeffic ients was achIeved
using Model Two and assumIng that the given geoid heights contain no wavelengths
with 1>4. Method Two modeling the wavelengths between I = 5 and I = 25 as
white noise yielded about the same results as Method One.
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